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Frequency Stable .C Oscillators®

J. K. CLAPP{, FELLOW, IRE

Summary—A simple theory of the conditions for oscillation, and
of the frequency stability of inductance-capacitance oscillators is
evolved from a survey of a number of papers on this subject. As some
of these papers appeared in publications which are not readily acces-
sible, some of the material may be new to workers in the United
States. The condition for oscillation is shown to depend only upon the
mutual conductance of the tube and the impedances, tapped on the
tuned circuit, presented to the grid and plate circuits of the tube. For
linear operation, the stability depends only on the Q of the controlling
circuit, and the ratio of the change of interelectrode capacitance to
mutual conductance of the tube, and is independent of the LC ratio.
For nonlinear operation, however, the stability depends upon the fac-
tors given above and on the LC ratio, being improved when a high
LC ratio is used. The best tube for high stability is shown to be the
tube having the lowest ratio of interelectrode capacitance change to
mutual conductance. For highest possible stability, very low level
operation with some form of automatic level control is required. A
brief historical chrenology is included.

* Decimal classification: R355.911.4. Original manuscript re-
ceived by the IRE, February 11, 1954. :
1 General Radic Co., Cambridge, Mass.

of oscillator circuits in which the input and out-
put circuits of the tube are connected across por-
tions of the tuned circuit.
It can be shown'? that the condition for oscillation is
given by:

THIS DISCUSSION will be limited to that class

1/gm= vZi'Zy (1)

where Z,’ is the impedance presented by the tapped
portion of the tuned circuit to the grid circuit of the
tube, and Zo' is the impedance presented by the tapped
portion of the tuned circuit to the plate circuit of the
tube. The internal impedances Z: and Z,, of the input

! Jiri Vackar, “LC oscillators and their frequency stability,”
pp. 1-9, Telsa Tech. Reports, Czechoslovakia; December, 1949,

* J. Ku Clapp, “An inductance-capacitance oscillator of unusual
frequency stability,” Proc. I.R.E., vol. 36, pp. 356-358; March, 1948;

Discussion, W. A. Roberts, “Proc. I.R.E., vol. 36, pp. 1261-1262;
October, 1948.
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and output circuits of the tube are assumed to be large
by comparison to the tapped impedances Z," and Zy/,
which is generally the case in practice.

The effect of a change AC; in the input capacitance
of the tube, connected across the tapped impedance Z,’
of the tuned circuit, causes a detuning equivalent to a
change AC, in the tuned circuit capacitance Cy, such
that:

ACo/AC, = Z{' /Ry (2)

where Ry is the parallel-resonant impedance of the
tuned circuit.

If the tuned-circuit capacitance is Cy, a change of ACy
in this capacitance causes a fractional frequency change
of

Af/f = ACo/2Cs. (3)
Substituting from (2) we have:
Aflf = (Z)'/2R)(AC,/Co). (4)

The larger the impedance Zy', the larger the frequency
change. Similar considerations apply for changes in
tube-output capacitance, ACs;, and impedance Zy'. For
equal changes in either grid or plate capacitance, the
minimum frequency change, when Z,'Z," is given by (1),
occurs when Zi' =Z,' =1/g, and, since Ro=Q/wCy, is

Af/f = (1/2RiCo)(ACy/gm) = (@/20)(AC1/gm)
= 27(f/20)(AC1/gm) = {1/2(L/R)}(ACs/gm).  (5)

This condition makes the grid and plate voltages
equal, and the tube consequently operates at low effi-
ciency, which is not of prlme importance for oscillators
where frequency stability is the principal consideration.

In practice, however, it is frequently found that
changes in plate-circuit capacitance of the tube are ap-
preciably less than changes in the grid-circuit capaci-
tance. Under such conditions, improved frequency
stahility and better efficiency can be obtained by not
making Z,' =Z,".

We can write the total frequency change, caused by
changes in both grid and plate capacitances as:

Af/f = (1/2RdCo)(Z\'AC: + Z2'ACs). (6)
Let AC:=AC:/k, then
Af/f = (1/2RoCo)(Z1'ACy + Z4'AC1/R). )

Remembering that the condition for oscillation re-
quires the product of Z'Zy’ to remain constant, divide
Z{ by a factor, m, and multiply Z;’ by the same factor.

Then

Af/f = (1/2RCo) { (21! /m)ACy + mZy'(AC1/B)}  (8)

which will be 2 minimum when the two terms in the
right-hand brackets are equal. The original condition
called for Z,' =2, =1/gm.

So we have

August
1/m = m/k, (9)
from which
=/ (10)
and

Af/f = (1/2RLCo)(AC:/gm)(1//E + 1//B)  (11)

for the minimum value.? In effect this makes equal the
contributions of the grid and plate-circuit capacitances
to the total frequency change.

Since Ro=Q/wC, we can write (11) as

Af/f = (@/20)(AC1/gm)(2//F)
= 2x(f/2Q)(AC1/gn)(2/\/)
= {1/2(L/R) } (AC1/gm)(2/\/F) (12)

when ACo=AC/k.

Equation (12) is instructive since it gives the value
of the frequency coefficient immediately, when the
quality of the controlling circuit and the ACi/gn ratio
of the tube are known. If AC; were independent of g,
that tube having the greatest g, would give the best
frequency stability, and this conclusion has been
reached by several writers. In practice, however, the
tubes having the larger values of mutual conductance
have also the larger values of C; and larger values of AC:.
The choice of a tube having very small tube capaci-
tances, and small capacitance changes, associated with
a moderate value of g, will frequently result in a sub-
stantially lower AC:i/gn. ratio and better frequency
stability, This is particularly true of secondary changes
in tube capacitances such as those caused by changes in
heater temperature, for example. Equation (12) also in-
dicates that the frequency coefficient is independent of
the LCy ratio of the tuned circuit, which is true as long
as the assumption of linear operation is valid,—a con-
clusion reached by several writers. ITowever, with non-
linear operation, the frequency coefficient is not inde-
pendent of the LC ratio, as will be shown later. Equa-
tion (12) also states that the stability depends only on
the quality of the tuned circuit, and, for a given value
of AC;, on the g, of the tube. This latter term expresses,
in effect, the minimum degree of coupling which can
exist between the driving circuit and the controlling
circuit.

A comparison of a few of a number of circuits which
have been developed for frequency stable oscillators is
of interest. The circuit, independently developed by
Gouriet* and Clapp,? is probably the simplest and is
shown schematically in Fig. 1.

For the impedance presented to the grid circuit of the
tube, we have

Z{'=R,"*/(C,'+C)? where C,/=C,(1/(1+C./C3)) (13)

i With AC;=AC:/10 and the original condition that Z\'=2Z/,
Af/f=(AC1/2RoCo gm)(1.1) from (5). Usmg (11), Af/f=(AC/2RoCy
gm ((} 632), a change which is only about one-half as large.

. Gouriet, “High stability oscillator,” Wireless Engineer,
PpP- 105—112 April, '1950.
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Fig. 1—Gouriet-Clapp. Fig. 2—Seiler.
and, since Co:>>C, and C>3>C, gm = (1/Ro)(C/C:)* = («C,/Q)(C/C ) (22)
Zy' = RCY(C, 4 C1)? = Ry(C./Ch)%. (14) Now
From similar considerations, Coakfw? (23)
Zy! = Ry(C./C)? (15) So
and, for Ci=Co=C Em a kfo(. (24)
o With this circuit, assuming constant Q, the g, required
VZiZy' = 1/gn = R(C./C)* (16) for oscillation is proportional to 1/w, so that as the tun-
whence ing is changed toward higher frequencies, the amplitude
: rises. This would be increased, if, as is often true, Q in-
gn = (1/Ro)(C/Cy)? = «C*/QC.. (17) Q

We can obtain a qualitative indication of the change of
amplitude with tuning as follows:

w? = 1/LC, from which C, & k/w? (18)

So
gn @ wC*/(Qk/w?) a k?/Q.

This states that, assuming constant Q, the required
value of g, to maintain oscillation increases as the cube
of the tuning frequency. In practice this means that as
the circuit is tuned to higher frequencies, the amplitude
of oscillation will fall and finally the circuit stops oscil-
lating. Even if Q rises somewhat with frequency, as is
often true, the falling off in amplitude is still very pro-
nounced.

This oscillator is simple and is useful over a range of
about 1.2:1 in frequency, where stability is important.?

A parallel counterpart of the Gouriet-Clapp oscillator
was described by Seiler.® The circuit is given schemati-
cally in Fig. 2.

For the impedance presented to the grid circuit

Zy = ReX:*/(X1 + X.)* = RC/(C1 + C.)?

(19)

= Ro(C:/Cy)? (20)
with similar considerations for Z'.
Then
1/gm = VZi'Z)' = Ro(C./C)* (21)

creases with frequency. This oscillator is useful over fre-
quency ranges of about 1.8:1.

The inductive counterpart of Seiler's circuit, de-
scribed by Lampkin,” operates in the same manner. The
tube is connected to points tapped on the inductive
branch of the tuned circuit. The circuit shows a rather
strong tendency to break into spurious oscillation, be-
cause of the inductive reactances across the tube input
and output circuits.

Vackar! describes a circuit combining the features of
the series and parallel arrangements and it is shown
schematically in Fig. 3, on the following page.

£ In the author’s paper? describing this circuit, the condition for
oscillation was expressed in terms of the series impedance of the tuned
circuit as:

ngIXQ == Xla/ﬂr + ng/?’p = R, (a)
which, for practical cases, reduces to:
X1 Xo = R, (b)

now express R, in terms of the Eamliel resonant impedance, Ry, of the
tuned circuit, by writing X¢?/R, for R,:

InX1 X = Xa"/Ra (c)
or
1/gm = Ro(X1Xa/X %)
= V/Ro(Xa/X0) X2/ X0)? = /21 22 (d)
and, if X1 =X2=X

: &y 1/gm = Ro(Co/C)* = Ro(C,/C)? (e)
which is in the form given by Vackar.

¢ E. O. Seiler, “A variable frequency oscillator,” QST, pp. 26-27;
November, 1941,

?G. F. Lampkin, “An improvement in constant frequency os-
cillators,” Proc. L.R.E., vol. 27, pp. 199-201; March, 1939.



1298
Here
Cy' = Cy+ C.C1/(Cat Cy) (25)
= C, when C;>C, and C,>C. (26)
Zy = Ro{C2/(Cy' + Co)2}{C.2/(Cx + C1)?}
= Ro(C2/Ch)* 02T
2’ = R(C,"?/(Cy/ + C2)? =2 Ro(C./Ca)™ (28)
Then
gn = (1/Ro)(C2/C.)(C1/C2)
= («C./Q)(C,/C)(C1/C ) (29)
= (0/Q)(C1C2/C).

If Q is constant, the g, required to maintain oscilla-
tion rises with the frequency, so the amplitude would
slowly fall.

:Gz

S
Fig. 3—Vackar.

If Q increases with frequency, however, the amplitude
tends to remain reasonably constant. This circuit is use-
ful over frequency ranges as great as 2.5:1.

Vackar,! Gouriet* and Edson® point out that under
the condition of linear operation the stability is inde-
pendent of the LC, ratio. If this ratio is made zero, the
“series-tuned” oscillator, of Fig. 1, becomes simply a
Colpitts oscillator. To realize the correct impedance val-
ues to be presented to the tube, in order to maintain the
frequency stability, the circuit reactances of a simple
Colpitts oscillator become impracticably small.4:8

There is an important cause for frequency instability,
which is wholly neglected in the linear theory, and that
is the effect of harmonic components due to the dis-
tortion caused by the tube. Llewellyn? has shown that,
by intermodulation, the harmonic components can
cause a phase shift at the fundamental frequency. This
phase shift can be considered as an equivalent modifica-
tion of the generator impedance.* This modification can
be accounted for as a change in the generator capaci-
tance, Cy, since the real part of the generator impedance
must equal the loss resistance of the tuned circuit, which
has been assumed to be constant.

8 W. A, Edson, “Vacuum Tube Oscillators,” John Wiley and Sons,
Inc., New York, N. Y., pp. 170-172; 1953.

! F.W. Llewellyn, “Constant frequency oscillators,” Proc. I.R.E.,
vol. 19, pp. 2063-2094; December, 1931.
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Fig. 4

For the discussion of the effect of distortion, it is con-
venient to reduce the schematic of Fig. 1, to the equiv-
alent of Fig. 4. The change in frequency, resulting
from a change in generator capacitance, C,, is found as
follows:

The generator phase angle is

¢ = tan~! 1/wC,R, (30)
dCg
el (@*R,*Cy* + 1)(1/wR,)
= — (1/«R, + «wR,C %
= 1/wR, + wR,C,? since R, = — R,.  (31)
The frequency is
f=1/2rv/LC,C,/(Cs + Cy)
= foz/1 + C,/C, where fo = 1/27+/LC, (32)
and the change in frequency, with change of C, is
df P e
— = — (fo/24/1 + Co/C,)(C,/C?)
dc,
= — (fo/2)(C./C,)? since C,>C,.  (33)

From the condition for oscillation, when Ci=C.=2C,

w'Cy* = gm/4R, (34)
and
Co? = ga/du?R,. (35)
Then
% = 1/wR, + gu/4w. (36)
Substitute 1/wC,Q for R, in (35) obtaining
C,* = g.C.0/4w (37)
from which
C,/C % = 4u/ga0. (38)
Substitute in the expression (33) obtaining:
N Y T

ac,
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Then
af df dc, ;
_==¢-~—=—4r2 m 1 Rs 'R “2
T (4nfo?/gmQ)(1/wR; + wR ,C,?)
= — (f/20 + 1/wgul), (40)
since

Q = wL/R,.

The first term is the differential coefficient of fre-
quency with respect to phase of the tuned circuit at
resonance. The second term is very much larger than the
first, and indicates that increasing L will reduce its ef-
fect. In other words, when distortion is present, a cir-
cuit of high LC, ratio is desirable for best stability,
whereas in the linear case the stability is independent of
the LC, ratio.

The effect of a small quadrature current flowing
through the generator impedance could produce a rela-
tively large frequency change, which would be quite
sensitive to changes in plate supply voltage, for example.
Such a quadrature current might be caused by unin-
tentional feedback from a subsequent amplifier stage.
The use of a high LC, ratio in the tuned circuit can re-
duce the frequency change caused by phase change by
100 or more times over the change experienced in a sim-
ple Colpitts oscillator. »

All of the above brings out the fact that careful con-
nection of output amplifiers is necessary, and that the
tube must be operated in as nearly a linear manner as
possible. Taking the output across a low resistance in
the plate circuit and using some form of automatic level
control are proper steps.
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Fig. 5—Hansen.

The “‘series-tuned’ circuit stems from the crystal os-
cillator which we have used for several years. The shunt
capacitors assume lower values than in LC circuits be-
cause of the extremely small series capacitance of the
quartz vibrator. The resistance of the quartz vibrator is
also much higher than that of an LC-tuned circuit.

Hansen!® describes a crystal oscillator of this type
with a lamp in the cathode lead to provide automatic
control of amplitude, Fig. 5. To adjust the effective

10 H. N. Hansen, “A crystal oscillator for carrier supply,” Philips
Tele. News, vol. X, pp. 1-15; January, 1949,

Clapp: Frequency Stable LC Oscillators

1299

value of feedback resistance to the desired value, the
lamp is coupled through a transformer.

Analysis of the circuit, with feedback, results in equa-
tions identical with those obtained with no feedback
except that g, is replaced by g.’, the reduced value of
g caused by feedback. If a lamp is used for the feed-
back resistor, the effective resistance becomes a function
of ac-plate current, so that an increase in level is offset
by a reduction of g,’. This control is obtained without
change of bias.

Enhanced control could be obtained by amplifying
the oscillator output, rectifying it and applying the rec-
tified current to the lamp.
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Fig. 6—Harris.

A circuit somewhat similar to the above feedback
circuit has been described by Harris"! as a “Q multi-
plier” circuit, Fig. 6. In this circuit, a cathode follower
amplifier is connected through a high resistance to a
tap on a tuned circuit, the high impedance point of
which is returned to the grid. If the drop in output volt-
age to the tap on the tuned circuit is offset by the volt-
age stepup of the tuned circuit, the circuit will oscillate.
If the gain of the completely degenerated amplifier ap-
proximates unity, then the value of series resistance is
Ry/4 for oscillation, if the tuned circuit is tapped half-
way up. In this oscillator, the output circuit is almost
completely isolated from the tube output circuit; the
tube input circuit is placed across the entire tuned cir-
cuit. Since changes in tube input capacitance are re-
duced by feedback, this circuit has possibilities as a
stable oscillator, particularly for low frequencies.

HistoricaAL CHRONOLOGY

The criterion for oscillation, 1/g,=+’Z,'Z,’, means
that the highest stability, with respect to changes of the
internal capacitances of the tube, can be achieved by
connecting the grid and plate circuits to points on the
tuned circuit of as low impedance as possible and still
maintain oscillation.

This criterion, expressed in slightly different ways,
was discovered by a number of authors (as mentioned in
this paper) and was realized in various forms of circuits.

U H. E. Harris, “A simplified Q multiplier,” Electronics, pp.
130-134; May, 1951.
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The oscillator developed by Gouriet, which it is stated,
has been used in the B. B. C. since 1938, was not de-
scribed in the technical press until 1947 and then in a
book, “Radio Engineering” by E. K. Sandeman. The
circuit was independently developed by Clapp in 1946
(described in the PROCEEDINGS OF THE [.R.E., 1948).2
The circuits developed by Seiler (QST, 1941)% and
Lampkin (ProceepINGs oF THE I.R.E., 1939)7 follow
the same criterion, but were not described clearly on the
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impedance concept.

During the war development of stable oscillators in
Czechoslovakia was carried out independently and
without exchange of technical information with the
West. The circuit of Fig. 3 of this paper was developed
by Radioslavia in 1945, but publication did not occur
until 1949 Meanwhile, the same circuit was developed
independently by O. Landini in Italy and was described
in Radio Rivisia, 1948.
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